欢迎访问:新清华

日期选择

生命学院合作发现调控胆固醇稳态的新激素 物理系将第一性原理人工智能方法拓展至密度泛函微扰理论计算 交叉信息研究院利用囚禁离子实现合成维度和人工磁场的量子模拟 药学院揭示二甲双胍转运蛋白OCT1的转运和抑制分子机制 深圳国际研究生院揭示单细胞微藻的对冲生存策略 “四校一所”政治经济学工作坊研讨会举行
学术前沿
新清华

2024年03月29日

2321

本期8

文章27

字号【 加大 还原 减小

物理系将第一性原理人工智能方法拓展至密度泛函微扰理论计算

新清华 2024年03月29日 第2321期 学术前沿

深度学习密度泛函微扰理论计算框架示意图。

  本报讯 近日,清华大学物理系徐勇教授、段文晖教授研究组提出一种第一性原理人工智能的计算框架,利用神经网络进行密度泛函微扰理论(DFPT)计算,这一突破性的方法极大地提高了材料的微扰响应性质研究的计算效率。
  利用第一性原理方法计算预测材料的微扰响应性质,对于指导实验和实际应用具有重大意义。传统上使用DFPT方法研究响应性质,可用于描述巴丁-库珀-施里弗超导、铁电性、输运性质等物理现象。然而,这种方法由于其较高的计算成本,可处理的材料体系范围受到极大限制。近期发展的一系列深度学习第一性原理计算方
法,能够加速密度泛函理论(DFT)计算,高效准确地预测大尺度材料基态性质。将深度学习方法由DFT拓展至DFPT,从而极大加速微扰响应性质计算并应用于大尺度材料研究,是重要且亟待解决的问题。
  在先前工作中,徐勇、段文晖研究组发展了一种名为DeepH的深度学习第一性原理计算方法,可从DFT数据中学习,并预测给定材料结构的哈密顿量,从而高效计算基态物理性质。随后,他们将这一方法推广至基于等变神经网络的普适框架DeepH-E3,以及用于研究磁性超结构的xDeepH。在这项最新进展中,徐勇、段文晖研究组将DeepH方法进一步扩展应用到DFPT计算上,通过神经网络学习DFPT的核心物理量,即单位扰动下科恩-沈势的变化,从而实现绕过最为耗时的斯特恩海默方程自洽求解过程,直接获得材料的微扰响应性质。
  该工作通过结合神经网络与自动微分技术,能够准确预测物理量的导数,同时仅需使用DFT数据训练神经网络,大大简化了训练计算。应用此方法于电声耦合性质的研究,包括准确预测了声子线宽、伊利埃伯格谱函数、电声耦合强度以及巴丁-库珀-施里弗超导转变温度,成功证明了方法的高效率和良好的准确性,可研究传统DFPT难以处理的大尺度材料体系。研究将深度学习DFT和DFPT整合在一个统一框架中,为微扰响应性质的高效精确研究开辟了新的道路,同时也为第一性原理计算与深度学习的交叉领域探索了新的可能性。
  近日,研究成果以“深度学习密度泛函微扰理论”为题发表于《物理评论快报》(Physical Review Letters)期刊上,并被选为编辑推荐文章。徐勇、段文晖为该论文的通讯作者,物理系2019级博士生李贺、2023级博士生唐泽宸为共同第一作者。 (物理系)

  • 语音播报
  • 一键复制
  • 导出
清华大学新闻中心版权所有,清华大学新闻网编辑部维护,电子信箱: news@tsinghua.edu.cn
Copyright 2001-2020 news.tsinghua.edu.cn. All rights reserved.